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New forms of writing well-known elasticity problems are proposed which enable algorithms to be obtained for constructing solutions 
in the form of series in powers of the elasticity constants. In particular, for a homogeneous isotropie body, the solutions are 
constructed in the form of series in powers of the Iryushin parameter co and the bulk modulus, while for a piecewise-homogeneous 
body, consisting of two materials, the solutions are constructed in the form of series in powers of ~ and ~.  Applications of the 
forms of the solution ol:tained to problems of viscoelasticity are considered. Copyright © 1996 Elsevier Science Ltd. 

The Volterra method and the method of integral transformations, which use a Laplace (or Laplace- 
Carson) transforme,tion are widely employed to solve linear quasi-static problems of viscoelasticity [1-5]. 
In each of these the solution of the linear viscoelasticity problem is constructed from the solution of 
the corresponding elasticity problem. In the first case, the construction of the viscoelastic solution reduces 
to replacing the elasticity constants by Volterra operators and subsequent interpretation of the operator 
relations. In the second, it is required to obtain the originals from the known transforms. In both methods, 
the change from the elastic solution to the viscoelastic one is often accompanied by serious computational 
difficulties, connected with identifying the operator relations. - 

One of the possible ways of solving this problem is by representing the solution of the corresponding 
elasticity problem in a form convenient for subsequent identification. The first example of this kind is 
due to Volterra: for the problem of the deformation of a viscoelastic sphere with displacements specified 
on the surface he cx3nstructed a solution in the form of a series in positive powers of the time operator 
[6]. An effective method which enables the computational difficulties to be eliminated on changing from 
transforms to the originals was proposed by II'yushin [7]. This method enabled an approximate solution 
of a wide range of problems of linear thermoviscoelasticity to be constructed. 

The approach oansidered in this paper to the solution of problems of viscoelasticity belongs to this 
group of methods. The proposed algorithms for constructing elastic solutions, convenient for transferring 
to the corresponding viscoelastic problems, are very efficient as far as their numerical realization is 
concerned and they also enable solutions of new viscoelasticity problems to be constructed. 

We will consider the method using the example of the solution of the problem of linear viscoelasticity 
for a homogeneous body made of a material that is hereditary-elastic for shear strains and elastic for 
bulk strains. Supl:~se that in the corresponding elasticity problem we use the II'yushin parameter co 
and the bulk modulus K as the elasticity constants. It is required to construct an elastic solution in 
displacements in the form of a series in integer powers of the Iryushiffparameter for a body of volume 
V, bounded by the surface Z = Xp + ~ .  Mass forcesfi action on the body, surface loads Pi are specified 
on the part ~ ,  and the displacements ~i are specified on the part 7_, u. 

The components ui of the required displacement vector must satisfy the Lam6 equations 

(1) 

and the boundary conditions 
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x ~ Eu: ui = ~ i  (2) 

[3 (au ,  ausi / ] ~ u , ' )  f l ] X E ~ p :  

= Kcoo - ~-o-1 [z Laxj/-l--+ --Saxi ) | -  .-..taxk 8q/vjj (3) 

Here p is the density, vj is the vector of the normal to the surface, (o0 is a certain dimensionless number, 
~i# is the Kroneeker delta, and xi are Cartesian coordinates. Summation is carried out over repeated 
subscripts from 1 to 3. 

Equations (1)--(3) are a consequence of identical transformations of the equations of the classical 
formulation of the problem of the theory of elasticity in displacements [8]. The solution of the problem 
will be sought in the form 

(~ l)" ,.< n~O O~ n) /~i = -- U (4) 

where v(i n) are the required functions, which depend on the coordinates. 
Substituting expansions (4) into (1)--(3) of the initial problem and comparing coefficients of like powers 

of (a}¢(o0 - 1), we obtain the following recurrent series of boundary-value problems 

=~v: 3v~.,o,+(±+-~ ]:"~ °' 
2 i ~, CO o 2) ax~axj = Xfo o 9fi 

x ~ r..: ,(o) = e ,  

[3(a , ( ,  °) a,~°)~ : i a~,(o) I .4 , ,~z , :  [~[ a - ~ +  - -~ . ,  + , - -_, , : :_La, . /~.  = 
a~, ) t,~o ) a,, ' , j ,  X,~o 

x ~ V: -V~v ,  + ( ~ - , - - .  
2 La)o 2)ax, axj- 1,2 

X E ~u: U:  s) = 0 

r3 ( a . : " )  + avJ ")" ) 1 "~av (") ] 

_ r3(a.:"-', a .F"~  aoF,, ] 

, ~ abe"-') 1 
2 axiax j ) 

(5) 

Solutions of the form (4) can be constructed, retaining both positive and negative powers of the 
parameter a). We make the following substitution 

OPlui = U~ (6) 

and multiply relations (1)--(3) by oJ N. The original problem then takes the form 

x~V: V2Ui+ 1 + -  ~ +  P3~ = -  -1 V 2 U i + -  
2 J axiax j K(o o 2 axiax j 
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x ~ Y.,,: Ui = 0 , ~  v 

+  x_j+too - j : 

.<<o. <o 1 
---KO>o-(C-)LTtm+-~7~, J- a-~/°"] v' 

The solution of problem (7) will be sought in the form 
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(7) 

n u, : ~. / =--_, ~.> 
n=0 ~, Clio 

(8) 

After expanding the factor to' v in powers of (agtOo - 1), substituting (8) into (7) and equating terms 
of like powers of the' parameter to, we obtain a series of boundary-value problems which differ from 
problems (5) solely by the right-hand sides in the first N approximations. 

Reverting back to the original variable, we have the following form of the solution 

,,, = to-~, jo (__= _ ~)"., ~.> t,<% ) ' 
(9) 

To prove the convergence of the method of constructing the solution of the elasticity problem in the 
form (9) and its nuraerical realization by effective computational procedures, in particular, the finite 
element method, we: will use a variational formulation. The following variational equation 

ps;, 
v K(o0 zp ^tao k tOo ) 

(10) 

and boundary conditions (2) correspond to boundary-value problem (1)-(3). 
Here ~u are virtual displacements, which satisfy the zero boundary conditions on T-,u, and we have 

also used the following notation 

r3ra, au,~ a,,~_ ]a~i~ 
<"'">' =! L~Lsx--7 + ~x-TJ- ~ ' , j  a~, (11) 

(u,o)2 = J I auk qso <3v~ dV 
v mo axk axi 

The following relation holds for expressions (11) 

(u, o) = ( u . . ) ,  + (u. 0)5 

The solution of the variational problem will again be sought in the form of expansion (4). To find 
the coefficients of this series we have the following recurrent sequences of variational problems 

v KCOo ~p K(Oo 
(12) 

(#"), 8u) = - ( ~ " - ' ) ,  8 u ) ,  

The convergencx: of the proposed procedure can be proved as follows: In view of the arbitrary nature 
of the variations 8ui we will initially put ~ i  = ~ -  vi ('-1) and then ~u i = vi (') + v! "-l), and add the results. 



650 V.P. Matveyenko et al. 

After some identical transformations and taking into account the symmetry of the scalar products (11) 
we obtain 

(v~.), v~.)) - ( v < . - .  vo,-n) : _ (vO,) + v<.-n, vO,) + vo,-n h _ (vo,) v~.) h - ( ~ , , - n  vo,-i) h 

From the fact that the scalar squares are positive definite it follows that the fight-hand side of the 
last equation is negative. Hence, the norms of the coefficients of series (4) decreases as n increases, 

1/2 and, consequently, series (4) converges with respect to the norm l[ u II = ~ ,  u) when the following 
condition is satisfied 

0 < o ~ <  2to 0 (13) 

We will consider the proposed method as it applies to the problem for a piecewise-homogeneous 
body, consisting of different materials, that are hereditarily elastic for shear strains and elastic for bulk 
strains. Thus, we have two viscoelastic bodies occupying volumes V1 and V 2 and bounded by the surfaces 
Z1 ----- ~i~l + ~-'ul + El2, ~ = ~-'~2 + ~-'u2 + El2" The bodies are in contact over the surface ~2. Mass forces 
~l are applied to the first of these, surface loads Pil are specified on the part of the surface Z#, and 
displacements ~il are specified on the surface Zul. The other body is subjected to similar forces. The 
conditions of continuity of the strains and stresses, normal and tangential to the contact surface, are 
satisfied on the contact boundary. 

We propose to construct the solution of the corresponding elasticity problem in the form 

m:0 n=0 

0,) 1~n1¢0.)2 l)nix(m,n) 
<Oo,-J t<oo -: i, 

(14) 

(the subscripts 1 and 2 relate to volumes V 1 
By analogy with the problem considered 

(14), the following recurrent sequence of variational problems can be obtained 

(ix (°'°),~u)l + (iX (0'0),~U)2 = S Pl'i#il ~uidV + 
vt KI K2(°0;£°02 

+l P2/,~ ~u, dV + f e.~u, dr.+ I ~#ui 
v 2 KiK20~olOJ02 zpt KIK2°)o;°~02 xex KiK2°')oi~02 

(ix <"'"),~u) I + (v  ("'"),Su) 2 : (ix ("-""), 8u)i -(ix °"'"-l),Su)~ 

and P 2, respectively). 
above, to find the coefficients v~" ~) (k = 1, 2) of series 

d~ 

(15) 

Here 

(u,v)l = fv~ ~ 7 ~xj~~x~J-~xk" 'JJaxi  dv 

av~ 
<"." )~ = I 1 a,,,, ao axj dv  

v~ K2tOol axk 

<"'">~:~ x,o,o, L2t ax, a., ) t 'o~- ) a., j~x, 

1 3 a . . a " l ]  au, : la ix ,~ .  
a., j a., , ja. ,  



Solutions of problems in the theory of elasticity 651 

,~ l au~- av, 
(u,v = ~ ~ ' 8 . . ~ d V  12 

v2 K2t°ott°o2 0xk '~ ~xj 

Using the version of the proof of convergence considered earlier, it can be shown that in this problem 
series (14) will converge when the following conditions are satisfied 

0 < ~! < 2t°0t, 0 < to~ < 2to02 (16) 

To construct soluti.ons relating both positive and negative powers of ¢~, we will use the following change 
of variables 

u,,=o,,"o,~,,, u,2 = .,,%~,,,~ (17) 

Equations (15) are then multiplied by co~, co~, change (17) is made, the factor oh M, ¢~N is expanded 
in series in powers of (tal/ta01 - 1)(o>z/ttl02 - 1), and the solution in the new variables U/k is sought in the 
form of series (14). The recurrent series of problems in the coefficients of these series will differ from 
Eqs (15) solely in the right-hand sides in the first M x N approximations. Reverting to the initial variables, 
we obtain the solution in the form of expansions in positive and negative powers of t0k. 

The construction of solutions of problems of the theory of elasticity in the form of a series in powers 
of two elastic constants also enables us to use Volterra's method effectively in problems of linear 
viscoelasticity for a homogeneous body in which the hereditarily elasticity properties of the material 
manifest themselves both in shear and bulk strains. 

For a homogeneous body, when using the shear modulus G and the bulk modulus K as the elasticity 
constants, the solution is constructed in the form 

-- ..o ) kro 
(18) 

The recurrent sequence of variational problems for finding the coefficients of series (18) has the 
form 

<~o,o~, s , , )= . f  P~ ,S,,,dV+ i' e' ~,,,a'Z 
v GoKo zp GoKo 

. . °  

(v {""). 8u) = -@ ~.,-i..~, Su)j - (v c., , .-. ,  8u)2 (19) 

Here 

<"'°>=! L oL x, dx, 

( . ,v) ,  = ! ro Lax, ax, 

<u,o >2 = 1 
V 

"] I 3u k ] 0v i 2 Ou k 8 q | + _ _ ~ $ o l ~ d V  
379x k ) Go ,3Xk Jc3xj 

2 ~u k _ ) c~vi 
3 ax k ~O ) 3xj dV 

1 0 u  k _ ( ) v  i dV 

The solution in the form of series (18) converges provided that 

(20) 

To construct solutions containing both positive and negative powers of G and K we will make the 
following change of variables 

U~ = GUKNui 

0 < G < 2 G o ,  0 < K < 2 K  o (21) 
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We propose  to use the finite e lement  me thod  to realize this me thod  numerically. In this connect ion 
we need  to make the following impor tant  observation: the recurrent  sequences  o f  problems obta ined 
for  finding solutions in the form o f  series in powers of  the elasticity constants have the same expressions 
for the left-hand sides o f  the equations and, consequently, the algebraic analogues to which they converge 
when using the finite e lement  me thod  also differ solely in their f ight-hand sides. Practical applications 
o f  the me thod  have shown that the compute r  time required to construct  a solution of  each individual 
successive problem from the general  recurrent  sequence is 15-20 times less than that required to 
construct  a solution o f  the first problem of  the sequence considered. This fact distinguishes the proposed 
algori thms as the most  efficient for  numerical  realization on a compu te r  among  the various o ther  
methods  o f  solving problems of  the theory of  viscoelasticity based on Volterra 's method and the method  
of  successive transformations.  

F_Jamp/e 1. Consider a short hollow cylinder occupying the region a ~< r ~< b, 0 <~ z ~< r 2I, in a cylindrical system 
of coordinates. The outer surface r = b is fixed, the inner surface r = a and the ends z = 0 and z = 2/, are stress- 
free. Axial mass forces act on the cylinder. It is required to determine the elastic axisymmetric displacement field. 

Initially, using the finite-difference method we solve the problem of the elastic cylinder for a/b = 0.4; 2L/b = 
1; to = 0.069. We use this solution as a test. 

We then consider the variational problem (12), the solution of which we construct in the form of series (9). The 
problem is solved numerically using the finite element method. Here the type of elements and the degree of 
discretization are similar to the test version. 

The number of terms of series (9) is chosen so that the quantity 

[U  (n )  _ U ( n - l )  [ 
C = y r ~  jU(.) l  

becomes less than a previously specified small quantity e.. 
Calculations showed that when the number of terms of the series is increased by a factor of no more than 2 the 

accuracy increases by a factor 10. The dependence of the number of terms on too and on N for a specified accuracy 
e, = 0.01 is shown in Table 1. The numerator shows the number of iterations and the denominator shows the value 
of the relative error e as a percentage. 

The solution obtained in the form of series (9) was compared with the test solution at all the nodal points of 
the region calculated. Table I shows the relative error of the solution as a function of to o and N. Here the number 
¢00 satisfied condition (13). The version when condition (13) is not satisfied (ta0 = 0.02) is also given. In this case 
series (9) was divergent. 

Examp/e 2. We will consider the model problem of the stress-strain state of a double-layer viscoelastic cylinder 
having the following dimensions: ct = a/b = 0.3, [~ = c/b = 1.1, T = 2Lib = 2, where a is the inner radius, b is the 
radius of the contact surface, c is the outer radius and 2L is the length of  the cylinder. A constant pressure P acts 
on the inner surface of the cylinder, and the outer and end surfaces are assumed to be stress-free. The materials 
of the layers have different mechanical characteristics, heredity-elastic for shear and elastic for bulk strains. The 
inner layer is given the index k = 1 and the outer layer is given the index k = 2. 

Using the above method we constructed a solution of the corresponding elasticity problem retaining positive 
and negative powers oftbe II'yushin parameter 0k. Taking the form of this solution into account, and using Volterra's 
method, the viscoelastic solution can be written as follows: 

(22) 

~ b l e  1 

N = 0  I 2 3 

0,04 18 6 5 5 
0,22 0.23 0.02 0.0 

0.143 7 5 5 6 
0.95 0,11 0.02 0.02 

0.02 I 0 6 7 8 
1,34 0.21 0.02 0,02 

0,05 2_.O_0 11 1__~2 14 
4.84 0.55 0.15 0.i2 
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Ve~ion Version 

I 2 3 4 5 6 7 8 

At 3.0 0,3 0.4 0.04 3,0 0,3 0.4 0.04 
A2 4.0 0,4 4.0 0,4 4.0 0A 4.0 0.4 
[~j 0.3 0.3 0,3 0.3 0.4 0,4 0.4 OA 
[]2 0.4 0,4 0.4 0,4 4.0 4.0 4.0 4.0 

where g(t) is a function of time, to which all the external forces are proportional. 
The calculation of 1elations (22) reduces to identifying the product of the operators of the following structure 

~°~ol ) ~C°o2 ) 

where ~ are integral Volterra operators 

¢b. (g)--e0t[g(,)- ! Rt (t-'c)g('t)d'c] 

with relaxation kernels Rk(t). 
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When the function g(t) is represented in the form of a section of a power series with respect to time, analytic 
expressions are obtained for calculating relations (23) using in the operators ~ kernels of an exponential type, a 
power type and an Abel type. For the Rzhanitsyn kernel Rk = Ak exp(-l]t.t)tak -1 analytic formulae can be obtained 
for 131 = ~ .  The expressions for ~ and ~03 may contain a different type of kernel. For certain combinations of 
kernels one can also obtain analytic expressions for identifying the operator expression (23), for example, for 
exponential and power kernels. The analytic expressions obtained are given in [9]. 

When the operation of identifying the operator relations (23) cannot be carried out analytically, one can use 
the method of quasi-constant operators [10]. A method of using this approach for the proposed method was 
descn'bed in [11] and it was shown that it gives satisfactory accuracy. 

In the example considered we used an exponential-type relaxation kernel 

Rk(t) = A:xp(--~t?' ) 

Calculations were carried out for instantaneous values of the Iryushin parameters ¢01 = 0.222 and ¢o2 = 0.30778 
and bulk moduli KIG1 = 3, K2/G 1 = 216.7 (G 1 is the instantaneous shear modulus of the inner layer of the cylinder). 
Versions of the values of the constants Ak and 13k of the kernels Rk(t) considered are shown in Table 2. The values 
were chosen from the following model considerations. ForAk = 3 and 13 k = 4 the ratio of the instantaneous value 
of the II'yushin parameter o~ to its long-term value c0~'was equal to four, and the ratio 

became less than 3% for t= 1, i.e. it was assumed that by this time rheological processes in the material had practically 
ended. A material with these parameters is called a material with pronounced rheological properties, which manifest 
themselves rapidly with time. 

ForAk = 0.3 and 13k = 0.4 the ratio 0~kR0k" remained unchanged, but the value of × reached a value of 3% at 
the instant t = 10. A material corresponding to these parameters has been called a material with pronounced 
rheological properties, which manifest themselves slowly with time. The parameters Ak = 0.4 and I~k = 4 define a 
medium with only weak rheological properties (0bJ0.~ = 1.11), which manifest themselves rapidly with time, while 
the parameters A,  = 0.04 and I~k = 0.4 define a medium with only slight rheological properties which manifest 
themselves slowly with time. 

An analysis of the results obtained enabled us to clarify how the stresses vary with time in a composite viscoelastic 
cylinder. The most interesting case is the one in which one of the layers consists of a material with pronounced 
rheological properties which manifest themselves rapidly with time (in the version considered this is the inner layer), 
while the second layer is made of material with the same characteristics but which manifest themselves slowly with 
time. 

The lines of equal level of intensity of shear stresses ~* = a/P shown in Fig. 1 for the lower half of the cylinder 
at the instants of time t = 0 (a), t -- 1 (b) and t = 50 (c), correspond to this version of the parameters. The scale 
divisions within the layer are constant. In the first layer the value a* = 0.12 corresponds to the first level and the 
value o* = 0.83 corresponds to the tenth level. In the second layer, on the first level if* = 1.04 and on the fifteenth 
level o* = 2.56. It can be seen by comparing Fig. l(a)-(c) that for an external load which is constant in time, the 
stresses on certain parts of the region investigated vary non-monotonically with time. When the thickness of the 
outer layer is reduced, this mechanical effect becomes more striking. This is confirmed by Fig. 2 where we show 
the stress distribution eJ~ = o~/P over the thickness of the cylinder at different instants of time. 
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