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New forms of writing well-known elasticity problems are proposed which enable algorithms to be obtained for constructing solutions
in the form of series in powers of the elasticity constants. In particular, for a homogeneous isotropic body, the solutions are
constructed in the form of series in powers of the II'yushin parameter » and the bulk modulus, while for a piecewise-homogeneous
body, consisting of two materials, the solutions are constructed in the form of series in powers of @, and w,. Applications of the
forms of the solution ottained to problems of viscoelasticity are considered. Copyright © 1996 Elsevier Science Ltd.

The Voiterra method and the method of integral transformations, which use a Laplace (or Laplace—
Carson) transformation are widely employed to solve linear quasi-static probiems of viscoelasticity {1-5].
In each of these the solution of the linear viscoelasticity problem is constructed from the solution of
the corresponding elasticity problem. In the first case, the construction of the viscoelastic solution reduces
to replacing the elasticity constants by Volterra operators and subsequent interpretation of the operator
relations. In the second, it is required to obtain the originals from the known transforms. In both methods,
the change from the elastic solution to the viscoelastic one is often accompanied by serious computational
difficulties, connected with identifying the operator relations.

One of the possible ways of solving this problem is by representing the solution of the corresponding
elasticity problem in a form convenient for subsequent identification. The first example of this kind is
due to Volterra: for the problem of the deformation of a viscoelastic sphere with displacements specified
on the surface he constructed a solution in the form of a series in positive powers of the time operator
[6). An effective method which enables the computational difficulties to be eliminated on changing from
transforms to the criginals was proposed by II’yushin [7]. This method enabled an approximate solution
of a wide range of problems of linear thermoviscoelasticity to be constructed.

The approach considered in this paper to the solution of problems of viscoelasticity belongs to this
group of methods. The proposed algorithms for constructing elastic solutions, convenient for transferring
to the corresponding viscoelastic problems, are very efficient as far as their numerical realization is
concerned and they also enable solutions of new viscoelasticity problems to be constructed.

We will consider the method using the example of the solution of the problem of linear viscoelasticity
for a homogeneous body made of a material that is hereditary-elastic for shear strains and elastic for
bulk strains. Suppose that in the corresponding elasticity problem we use the IPyushin parameter ©
and the bulk moclulus K as the elasticity constants. It is required to construct an elastic solution in
displacements in the form of a series in integer powers of the II’'yushin parameter for a body of volume
V, bounded by the surface T = X, + X,,. Mass forces f; action on the body, surface loads P; are specified
on the part Z,, and the displacements ®; are specified on the part I,

The components y; of the required displacement vector must satisfy the Lamé equations
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and the boundary conditions
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Here p is the density, v; is the vector of the normal to the surface, ay is a certain dimensionless number,
d; is the Kronecker delta, and x; are Cartesian coordinates. Summation is carried out over repeated
subscrlpts from 1 to 3.

Equations (1)-(3) are a consequence of identical transformations of the equations of the classical
formulation of the problem of the theory of elasticity in displacements [8]. The solution of the problem
will be sought in the form

y=3 (ﬂ—lJ"v.‘"’ )

where v are the required functions, which depend on the coordinates.
Substituting expansions (4) into (1)3) of the initial problem and comparing coefficients of like powers
of (a/wy — 1), we obtain the following recurrent series of boundary-value problems
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Solutions of the form (4) can be constructed, retaining both positive and negative powers of the
parameter @. We make the following substitution

oMu; = U, 6)

and multiply relations (1)—(3) by . The original problem then takes the form
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The solution of problem (7) will be sought in the form
U; = — 1™
3 (mo ] v, ®)

After expanding the factor @” in powers of (w/ey — 1), substituting (8) into (7) and equating terms
of like powers of the parameter ®, we obtain a series of boundary-value problems which differ from
problems (5) solely by the right-hand sides in the first N approximations.

Reverting back to the original variable, we have the following form of the solution

u; = -"z (—_1)":,(") ©)

Wy

To prove the convergence of the method of constructing the solution of the elasticity problem in the
form (9) and its nurnerical realization by effective computational procedures, in particular, the finite
element method, we will use a variational formulation. The following variational equation
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and boundary conditions (2) correspond to boundary-value problem (1)—(3).
Here du are virtual displacements, which satisfy the zero boundary conditions on X,,, and we have
also used the following notation
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The following relation holds for expressions (11)
(u, v) = (u, U)y +(u, v),

The solution of the variational problem will again be sought in the form of expansion (4). To find
the coefficients of this series we have the following recurrent sequences of variational problems
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The convergence: of the proposed procedure can be ?roved as follows: In view of the arbitrary nature
of the variations 8u; we will initially put 8u; = v!— vV and then 8u; = v + v{*D, and add the results.
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After some identical transformations and taking into account the symmetry of the scalar products (11)
we obtain

(l/"). U(n)) - (ljn—l)‘ U(n—l)) == (l)(") + VD 4 v(n—l))} _ (v(n)‘ v(n))2 — (U(n-l)’ u(n-l))2

From the fact that the scalar squares are positive definite it follows that the right-hand side of the
last equation is negative. Hence, the norms of the coefficients of series (4) decreases as n increases,
d ly, series (4 ith h = (u, u)"”* when the followi
and, consequently, series (4) converges with respect to the norm || u || = (4, 4)"'~ when the following

condition is satisfied

0<w<2w, (13)

We will consider the proposed method as it applies to the problem for a piecewise-homogeneous
body, consisting of different materials, that are hereditarily elastic for shear strains and elastic for bulk
strains. Thus, we have two viscoelastic bodies occupying volumes ¥; and V, and bounded by the surfaces
I =L, + Ly + Iy, I = Xy + L5 + Xj;. The bodies are in contact over the surface Z;;. Mass forces
fi1 are applied to the first of these, surface loads P, are specified on the part of the surface X, and
displacements ®;, are specified on the surface X,,. The other body is subjected to similar forces. The
conditions of continuity of the strains and stresses, normal and tangential to the contact surface, are
satisfied on the contact boundary.

We propose to construct the solution of the corresponding elasticity problem in the form
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(the subscripts 1 and 2 relate to volumes V; and V), respectively).
By analogy with the problem considered above, to find the coefficients vy {m, n) (k = 1, 2) of series
(14), the following recurrent sequence of variational problems can be obtamed
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Using the version of the proof of convergence considered earlier, it can be shown that in this problem
series (14) will converge when the following conditions are satisfied

0<w; <20y, 0<®; <20 (16)

To construct solutions relating both positive and negative powers of & we will use the following change
of variables
Uy = ofofuy, Upj=ofoiu, 17
Equations (15) are then multiplied by o, oY, change (17) is made, the factor oM, ol is expanded
in series in powers of (®;/wy; — 1)(wy/wy; — 1), and the solution in the new variables U is sought in the
form of series (14). The recurrent series of problems in the coefficients of these series will differ from
Egs (15) solely in the right-hand sides in the first M x N approximations. Reverting to the initial variables,
we obtain the solution in the form of expansions in positive and negative powers of ;.

The construction of solutions of problems of the theory of elasticity in the form of a series in powers
of two elastic constants also enables us to use Volterra’s method effectively in problems of linear
viscoelasticity for a homogeneous body in which the hereditarily elasticity properties of the material
manifest themselves both in shear and bulk strains.

For a homogeneous body, when using the shear modulus G and the bulk modulus X as the elasticity
constants, the solution is constructed in the form
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The recurrent sequence of variational problems for finding the coefficients of series (18) has the
form f p
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The solution in the form of series (18) converges provided that

0<G <2G, 0<K<2K, ¢2))

To construct solutions containing both positive and negative powers of G and K we will make the
following change of variables

U,' = GMKNM"
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We propose to use the finite element method to realize this method numerically. In this connection
we need to make the following important observation: the recurrent sequences of problems obtained
for finding solutions in the form of series in powers of the elasticity constants have the same expressions
for the left-hand sides of the equations and, consequently, the algebraic analogues to which they converge
when using the finite element method also differ solely in their right-hand sides. Practical applications
of the method have shown that the computer time required to construct a solution of each individual
successive problem from the general recurrent sequence is 15-20 times less than that required to
construct a solution of the first problem of the sequence considered. This fact distinguishes the proposed
algorithms as the most efficient for numerical realization on a computer among the various other
methods of solving problems of the theory of viscoelasticity based on Volterra’s method and the method
of successive transformations.

Example 1. Consider a short hollow cylinder occupying the regiona <r < b,0 <z <r 2L in a cylindrical system
of coordinates. The outer surface r = b is fixed, the inner surface r = ¢ and the ends z = 0 and z = 2L are stress-
free. Axial mass forces act on the cylinder. It is required to determine the elastic axisymmetric displacement field.

Initially, using the finite-difference method we solve the problem of the elastic cylinder for a/b = 0.4; 2L/b =
1; @ = 0.069. We use this solution as a test.

We then consider the variational problem (12), the solution of which we construct in the form of series (9). The
problem is solved numerically using the finite element method. Here the type of elements and the degree of
discretization are similar to the test version.

The number of terms of series (9) is chosen so that the quantity

Iu"')—u("'”l
€ = MAX ————p 7=
% i

becomes less than a previously specified small quantity ..

Calculations showed that when the number of terms of the series is increased by a factor of no more than 2 the
accuracy increases by a factor 10. The dependence of the number of terms on @y and on N for a specified accuracy
€+ = 0.01 is shown in Table 1. The numerator shows the number of iterations and the denominator shows the value
of the relative error € as a percentage.

The solution obtained in the form of series (9) was compared with the test solution at all the nodal points of
the region calculated. Table 1 shows the relative error of the solution as a function of @y and N. Here the number
y satisfied condition (13). The version when condition (13) is not satisfied (wy = 0.02) is also given. In this case
series (9) was divergent.

Example 2. We will consider the model problem of the stress—strain state of a double-layer viscoelastic cylinder
having the following dimensions: o = a/b = 0.3, 8 = ¢/b = 1.1, y = 2L/b = 2, where a is the inner radius, b is the
radius of the contact surface, ¢ is the outer radius and 2L is the length of the cylinder. A constant pressure P acts
on the inner surface of the cylinder, and the outer and end surfaces are assumed to be stress-free. The materials
of the layers have different mechanical characteristics, heredity-elastic for shear and elastic for bulk strains. The
inner layer is given the index k = 1 and the outer layer is given the index k = 2.

Using the above method we constructed a solution of the corresponding elasticity problem retaining positive
and negative powers of the II'yushin parameter . Taking the form of this solution into account, and using Volterra’s
method, the viscoelastic solution can be written as follows:
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Table 2
Version Version
1 2 3 4 5 6 7 8
A 30 03 04 0.04 3.0 03 04 0.04
A 1.0 04 40 04 40 04 40 0.4
By 0.3 03 03 03 0.4 04 04 04
i/} 24 04 04 04 40 40 40 40

where g(#) is a function of time, to which all the external forces are proportional.
The calculation of relations (22) reduces to identifying the product of the operators of the following structure

-~ m - n
I =a;"&;"(-“l'--1) (“’—’—l) 8(0) (23)
Woy

where @, are integral Volterra operators

4
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0

with relaxation kernels Ry(t).
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Fig. 1.
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When the function g(¢) is represented in the form of a section of a power series with respect to time, analytic
expressions are obtained for calculating relations (23) using in the operators m,‘ kernels of an exponential type, a
power type and an Abel type. For the Rzhanitsyn kernel R, = A, exp(~Bif)t°k ! analytic formulae can be obtained
for B, = [B,. The expressions for @, and @; may contain a different type of kernel. For certain combinations of
kemels one can also obtain analytic expressions for identifying the operator expression (23), for example, for
exponential and power kernels. The analytic expressions obtained are given in [9].

When the operation of identifying the operator relations (23) cannot be carried out analytically, one can use
the method of quasi-constant operators [10]. A method of using this approach for the proposed method was
described in [11] and it was shown that it gives satisfactory accuracy.

In the example considered we used an exponential-type relaxation kernel

Ry(D) = Aexp(-By)

Calculations were carried out for instantaneous values of the II'yushin parameters ®, = 0.222 and o, = 0.30778
and bulk moduli K;G, = 3, K,/G, = 216.7 (G, is the instantaneous shear modulus of the inner layer of the cylinder).
Versions of the values of the constants 4; and B, of the kernels R,(¢) considered are shown in Table 2. The values
were chosen from the following model considerations. For 4, = 3 and f; = 4 the ratio of the instantaneous value
of the II'yushin parameter «y to its long-term value @ was equal to four, and the ratio

-1
14 oo oo
x=|[ R(t-Tydt~ | Rk(l—‘t)d‘t:l [j Rk(l-‘t)d‘tJ
0 0 0

became less than 3% for t= 1, i.e. it was assumed that by this time rheological processes in the material had practically
ended. A material with these parameters is called a material with pronounced rheological properties, which manifest
themselves rapidly with time.

For Ay = 0.3 and B; = 0.4 the ratio w/«,” remained unchanged, but the value of x reached a value of 3% at
the instant ¢+ = 10. A material corresponding to these parameters has been called a material with pronounced
rheological properties, which manifest themselves slowly with time. The parameters 4, = 0.4 and B, = 4 define a
medium with only weak rheological properties (ay/@; = 1.11), which manifest themselves rapidly with time, while
the parameters A, = 0.04 and B, = 0.4 define a medium with only slight rheological properties which manifest
themselves slowly with time.

An analysis of the results obtained enabled us to clarify how the stresses vary with time in a composite viscoelastic
cylinder. The most interesting case is the one in which one of the layers consists of a material with pronounced
rheological properties which manifest themselves rapidly with time (in the version considered this is the inner layer),
while the second layer is made of material with the same characteristics but which manifest themselves slowly with
time.

The lines of equal level of intensity of shear stresses 6* = o/P shown in Fig. 1 for the lower half of the cylinder
at the instants of time ¢ = 0 (a), ¢ = 1 (b) and ¢ = 50 (c), correspond to this version of the parameters. The scale
divisions within the layer are constant. In the first layer the value ¢* = 0.12 corresponds to the first Jevel and the
value o* = 0.83 corresponds to the tenth level. In the second layer, on the first level 6* = 1.04 and on the fifteenth
level 6* = 2.56. It can be seen by comparing Fig. 1(a)~(c) that for an external load which is constant in time, the
stresses on certain parts of the region investigated vary non-monotonically with time. When the thickness of the
outer layer is reduced, this mechanical effect becomes more striking. This is confirmed by Fig. 2 where we show
the stress distribution og = 6,/P over the thickness of the cylinder at different instants of time.
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